1. ヤコブ・ビヤクネスの前線を伴った低気圧
ヤコブ・ビヤクネスが前線を伴った低気圧を発見したのは1919年である。発見というよりは、多くの低気圧に当てはまる新しい概念を作り上げたといった方が良いかもしれない。2019年はそれから100周年だったが、日本ではその後コロナが流行ったりしてそれどころではなく、それほど話題にならなかったようである。
気圧が低くなると天候が悪くなることは、1660年にマグデブルグ市長で技術者でもあったゲーリケによって発見されていた。この低圧域が大陸規模の大きさを持っていることを、ドイツのブランデスが1820年に発見した。しかしその後、本書の「8-2 低気圧の研究」で述べているように、ビヤクネスが新しい低気圧構造を唱えるまでは、気圧の低い領域の回りを風が比較的同心円状に回っており、そのどこかで天気が悪くなるとしか知られていなかった。
アーバークロンビーが19世紀後半に唱えた低気圧の構造。起こりそうなさまざまな現象が書き込まれているが、体系的なものではない。
ドイツのライプチッヒ地球物理学研究所で、所長として気象の研究を行っていたヴィルヘルム・ビヤクネスは、第一次世界大戦中に母国ノルウェーへ帰国するように要請を受けた。戦火によってドイツでの研究環境は悪化しており、彼はノルウェーへ帰国したが、海上貿易の途絶によりノルウェーは食糧危機に瀕していた。頼みの自国の農業も風上のイギリスからの気象情報が暗号化されてイギリス頼みの気象予測が出来なくなったため、農業や漁業に深刻な影響が出ていた。ヴィルヘルム・ビヤクネスは、本書の「9-2-1 ノルウェーの危機とヴィルヘルム・ビヤクネス」で述べているように、それまでにない高密度の気象観測網を構築して、息子のヤコブ・ビヤクネスを初めとする物理学の素養を持った予報者たちを育成して、気象予報を行った。
その結果、本書の「9-2-2 前線の発見」で述べているように、1919年にヤコブ・ビヤクネスは低気圧が非対称な温度構造を持っていることを発見し、気温などの性質が異なる気団の境目で雲が発達し、風が急変し、雨が降ることを唱えた[1]。そして第一次世界大戦直後であったため、その二つの異なる性質を持つ気団の境目を軍事用語から取った名称である前線(front)と名付けた(当初は戦線(battle front)と呼んでいた)。また、それまで2次元平面的だった低気圧構造に、彼は寒冷前線と温暖前線のそれぞれに鉛直方向に特有な構造を持ち込んだ。
これによって天候や風向きの変化を予測するのに、どこに注目すれば良いかが明確になった。また、上層の雲の変化を観察することによって、天候の崩れをある程度予測することが可能になった。 さらにビヤクネスがいた気象学のベルゲン学派(ノルウェー学派)は、その低気圧の概念を発展させて、低気圧が進行するとともに発達と衰弱することも明らかにした(「9-3-2 寒帯前線論」参照)。
ヤコブ・ビヤクネスが唱えた前線を伴った新しい低気圧構造。[1]より
この前線と低気圧を中心としたベルゲン学派気象学は、アメリカでは1930年代後半に採用されたが、日本の中央気象台がこれを採用したのは戦後である。ただし、このブログの「キスカ島撤収-「ケ」号作戦(4)」で述べたように日本海軍は一部でベルゲン学派気象学を使っていたようである。
2. パルメンによる低気圧の鉛直構造
ヤコブ・ビヤクネスが鉛直構造に注意を払ったのは前線で、低気圧そのものではなかった。本書の「8-2-4 低気圧の上部構造の推定」で述べているように、実は19世紀後半から、イギリスのクレメンテ・レイ、ドイツのケッペンやメラーらによって、高度における低気圧の構造の違いが少しずつわかっていた。1931年にパルメンは低気圧の鉛直構造を高層気象観測から体系的に分析した[2]。これによってヤコブ・ビヤクネスが提唱した前線の鉛直構造が確認されただけでなく、低気圧の前部での高い圏界面と低気圧後部での低い圏界面という構造が明確になった。これは低気圧が発達するメカニズム解明の手がかりを与えた。
|
1931年にパルメンが示した低気圧の鉛直断面図。 [2]を改変。 |
3. 低気圧の発達構造
1919年にビヤクネスが発表した前線をともなった低気圧構造は、低気圧は同じ構造を持って移動するだけで、その発達や消滅についてはわからなかった。1928年にゾルベルグは地表の前線付近の波との相互作用によって低気圧が発達するという説を唱えた。1944年にパルメンとホルンボーは、低気圧が発達するメカニズムについて全く異なる仮説を提唱した。それは上層での風の発散が大きい、すなわち大気の鉛直運動が最大となる所では、鉛直方向の風速シアが大きくて水平温度勾配が強くなり、低気圧が発達しやすくなるというものだった[3]。これは低気圧の発達のために低気圧の中心軸が高度が高くなるにつれて西に傾く必要があることを明確にした。
|
1944年にパルメンとホルンボーが示した低気圧の鉛直構造図。 [3]を改変 。 |
4. ストームトラック
第二次世界大戦後、世界各地の観測データがそろってくると、低気圧が発達しやすい地域があることがわかってきた。1956年にスウェーデンの気象学者スヴェール・ペターセンが北東太平洋と北大西洋、地中海で低気圧が発達しやすいことを示した。このうち北東太平洋(三陸沖から千島列島沖)と北大西洋は、多くの低気圧が発達しながら通過するストームトラックと呼ばれることがある。またここは俗に言う「爆弾低気圧(北緯60度で24時間に24hPa以上中心気圧が深まる低気圧)」が急速に発達する場所ともなっている。
5. 成層圏大気の影響
1950年代に高空での大気中核実験が盛んに行われるようになった。そのため、それによって生成される放射性物質を追跡することにより、大気の動きがわかるようになった。1964年にダニエルセンは対流圏上層と成層圏下部の大気が、低気圧後面の上層ジェットの曲率が大きいところで場合によっては境界層の上端まで下降してくることを発見した。
この成層圏起源の乾燥した大気は低気圧の西側から中心部に向けて細く巻き込まれるように流入することがある。この乾燥大気は雲や水蒸気を伴わないため、衛星赤外画像では暗い部分として確認できる。その場合は、暗域と呼ばれることがある。一方で、大気化学から見るとこれによって成層圏オゾンを含む大気が対流圏へ下降することが知られている。この成層圏下部・対流圏上層大気の対流圏下部への侵入は、トロポポーズ・フォールディング(圏界面の折れ込み)と呼ばれることもある。
低気圧後面での乾燥大気の流入例(2022年3月28日)気象衛星「ひまわり」水蒸気画像による。北千島で暗域が渦巻いているのがわかる。気象庁の衛星観測による。(https://www.gpvweather.com/jmagms.php?y=2022&m=3)
6. 前線に沿った地表大気の上昇
大気境界層上端では、その上の自由対流圏と境界層内の大気の交換は極めて制限されている。大気境界層上端で発達する大規模な積雲などによる輸送は、空間的・時間的に見て、輸送量は限られている。1971年にブラウニングは温暖前線の上に沿って、地表大気が大気境界層を超えて上層まで上昇することを発見した[4]。これはウォーム・コンベヤー・ベルトと呼ばれている。例えば大気汚染物質は大気境界層内での輸送は遅くて範囲が限られている(逆に高濃度に溜まりやすい)。しかしウォーム・コンベヤー・ベルトがあると、広域の大気が数日にわたって自由対流圏にまで上昇する可能性がある。そのため、大気境界層内の大気が一気に数千キロメートル先まで長距離輸送されるメカニズムの可能性の一つとなっている。
|
ウォーム・コンベヤー・ベルトの概念図 |
7. 低気圧と前線の新しい概念
近年になって、衛星観測や細かな観測網が充実してくると、ビヤクネスの低気圧モデルは必ずしも実態とは異なる場合があることがわかってきた。1980年にシャピロとカイザーは、寒冷前線が温暖前線と直角に交わり(その形からTボーンと呼ばれることがある)、さらに低気圧が発達すると、中心部で暖域が切り離されて隔離(seclusion)される新しい低気圧構造を唱えた[5]。これはシャピロ・カイザーモデルと呼ばれている(このブログ「前線のその後」を参照)。これはまた実際の低気圧は、単一の簡単な概念モデルでは表現できないことも示している。
その後も、前線に関して大気の川(大量の水蒸気の通り道)や湿舌などの新しい概念も生まれてきている。このように低気圧構造の解明はこの100年間で大きく進歩してきた。低気圧や前線の概念は集中豪雨などの防災にも重要な役割を果たしており、研究が進むにつれて、今後も前線や低気圧の構造に関する新しい概念が出てくるかもしれない。
8. 前線の実例(2022年8月18日に追加)
2022年8月18日に発達した低気圧が前線を伴って北日本を横断した。この時期に発達した低気圧が日本を通過するのは珍しいのではないか。ちょうどTボーン型になりかけの前線と西から流入する乾燥域が見えるので、16時の衛星画像をここに掲げておく。すべて気象庁のホームページから取得したものである。
|
2022年8月18日15時の天気図。 |
|
2022年8月18日16時の可視画像。 寒冷前線が温暖前線と直角に交わっているように見える。 |
|
2022年8月18日16時の赤外画像。
|
|
2022年8月18日16時の赤外画像。 暗域(乾燥大気)が西側から中心部に巻き込まれているのがわかる。 |
参考文献
[1]Bjerknes J. 1919: On the structure of moving cyclones. Monthly Weather Review, 47, 2, 95-99.
[2]Palmén E. 1931: Die beziehung zwischen tropospharischen und stratospharischen temperatur-und luftdruckschwankungen. Beitr. Phys. fr. Atmos 17: 102-116.
[3] Bjerknes J, Holmboe J. 1944. On the theory of cyclones. J. Meteorol. 1(1): 1-22.
[4] Browning K. 1971. Radar measurements of air motion near fronts. Weather 26(8): 320-340.
[5] Shapiro MA, Keyser D. 1990. Fronts, jet streams and the tropopause. In: Newton C, Holopainen EO, eds, Extratropical Cyclones. American Meteorological Society & Springer, 167-191.