2022年10月29日土曜日

風船爆弾(4)

4 風船爆弾の構造と性能

4.1 陸軍のA型風船爆弾の構造

後述するように海軍もシルク製の風船爆弾を開発しており、陸軍の紙製気球を使ったものは「A型」と呼称された。陸軍が開発したA型風船爆弾の気球は、直径約10m(最大容積500m3)で、気球の強度を出すために和紙が上半球は4層と下半球は3層に交互に縦横に600枚貼り合わせられたものだった。

気球の底部には水素ガスの放出弁がつけられた。気球中程のスカート状の吊りカーテンから運搬する装置や爆弾を吊るための多くの吊索が下げられた。その吊索で搭載物である高度制御装置、バラスト(砂袋と焼夷弾)、爆弾などを吊り下げた。風船爆弾の総重量は約182kgで、そのうち典型的な爆弾の積載量は、15kgの爆弾1個と5kgの焼夷弾4個だった [12]。

風船爆弾の構造。[1]を和訳

4.2 A型風船爆弾の飛行

A型の風船爆弾は、飛行中に日射によってガス圧力が高まると気球のガス放出弁からガスを放出する。夜間の低温によるガスの収縮やガス漏れのためにガス体積が減って高度が下がれば、高度制御装置がバラストを落として上昇する。これを繰り返すことによって、高度を維持した。

風速の予測からバラスト投下の必要回数を計算し、風船爆弾がアメリカ大陸上空で爆弾を投下するように予め適切な回数が設定された。設定された個数のバラストをすべて投下した後に、しばらくすると浮力が足りなくなって気球は落下を始める。設定高度である4000mまで高度が下がると、高度制御装置は搭載していた爆弾を投下して自爆する。その火は気球を炎上させる爆薬への導火線に引火して、風船爆弾自体の存在を消滅さえる仕組みだった [9]。

4.3 潜水艦を用いた海軍の風船爆弾計画

海軍では、中央気象台からの提案を受けてか、潜水艦搭載の小型気球に爆弾を搭載して、アメリカに近い洋上から発射する作戦を計画した。気球関係は相模海軍工廠が、気象関係は海軍気象部が担当して研究を進めた [13]。1943年3月には、航続距離3000kmの直径6m気球が開発され、日本の西海岸と東海岸の間1000kmの飛行が確認された。この形式の気球は、高度8000mで30時間以上滞空できることがわかった。

この気球は潜水艦の甲板で膨らませ、5kg焼夷弾1個を取り付けた。気球はアメリカから約1000km離れた地点で、夜間に潜水艦から発射される予定だった。高度制御装置はなく、昼間の日射による熱で加圧された余剰分の水素ガスを放出しながら飛行し、約10時間後の夜に浮力が低下した気球が、アメリカ大陸上で自然落下する計画だった [13]。

海軍は建造中の2隻の潜水艦(伊54と伊55)に気球発射設備の搭載に着手し、この作戦のために200個の気球が作られた。しかしマリアナ海戦の敗退とサイパンの失陥により、気球を使った攻撃の余裕はなくなり、この計画は1944年7月頃に中止された [13]。

4.4 海軍のB型風船爆弾

しかし海軍は、陸軍の風船爆弾計画と平行して別な風船爆弾の計画を開始した。それは、陸軍の気球のようバラストの投下と余分なガスの放出で高度を制御するのではなく、気球にガスを充填後に気球体積を一定に保つように、表皮に温度や高度による圧力変化に耐える強度を持たせた。そのために表皮は、重いゴム引きのシルク生地(羽二重)を利用した。

海軍が開発したシルク製気球は「B型」と呼称された。海軍のB型気球は、原理的には定積気球を目指したものと思われる。これは強度のある表皮を用いて気球内部を加圧し、周りの温度にかかわらず気球の体積、つまり浮力を一定に保つものである。

しかしB型の材質であるシルクでは耐えられる圧力に限界がある。実験飛行中に、日射の加熱によりガス圧の測定値が毎日午後3時頃に最高値となり、多くの気球がこの時点で破裂した。そこでその後、気球にガス放出弁を取り付け、気球内のガス圧が外気圧より約70hPa以上高くなると水素ガスを放出するようにしたところ問題は解決した [9]。

B型にはガス漏れによる浮力低下を補うため、簡単な高度制御装置が付いていた。約3kgのバラスト14個を、高度が下がると4回に分けて投下するようになっていた。そしてA型と同様に最後に爆弾を投下する仕組みだった[1]。

B型は飛行が安定し、追跡等が容易なため300個が製作された。風船爆弾による攻撃時に、試射隊によってA型と同時に2~3個のB型の風船爆弾が発射された [9]。

4.5 A型とB型の風船爆弾の違い

陸軍のA型と海軍のB型の気球の仕組みや飛行性能の違いについて簡単にまとめておく。なお物理学的に、浮力は気球の体積が押しのけた分の空気の重さと同じとなる。

気球表皮の材質はどちらも紙かシルクかであり、ゴムのラバーとは違って伸縮はしないので、どちらも気球の最大体積は一定である。原理的な構造からいうと実は両者には大きな違いはない。ただA型は表皮が紙で耐圧がないので、気球の内圧は、ガス放出弁を用いて常に外の気圧と同じにする。日射による加温によって内圧が気圧より高くなった場合は、ガス放出弁から水素ガスを放出して内圧を下げる。気温が下がって内圧が低くなった場合は、気球がしぼんでやはり内圧は気圧と同じになる。

そのため上空で満球になるように、地上では気球に最大体積の6割程度しか水素ガスを注入せず、しぼんだ形で発射する。上空でガスが抜けて浮力が下がれば、バラストを放出して気球重量を軽減して高度を維持する。バラストがなくなった後に浮力が下がれば、落下して設定高度(約4000m)で爆弾を投下して自爆する。

一方、B型は発射時から外気圧と同じか少し高くなるまで内圧が高くなるように水素ガスを注入する。そのため、気球は地上での発射時から満球である。上空に上がって気圧が下がるか、日射によってガス温度が高くなって、内圧と外圧の差が70hPa以上大きくなれば、その時点で表皮が破れないようにガス放出弁からガスを放出する。

気球の体積は変わらない。気球は押しのけた体積の空気の重さ(浮力)と風船爆弾の重さが釣り合った高度で飛行する。そのためB型は飛行高度が比較的安定していることが特徴だった。ただし、徐々にガスを放出して気球内圧が外の気圧より低くなれば気球はしぼみ、浮力が全重量より小さくなれば自然落下し、設定高度で爆弾を投下してて自爆する。

B型風船爆弾による1944年9月29日のテスト時の記録。[1]を日本語に改変。
なお、?は筆者による注記。

4.6 兵器としての発展

日本上空10km付近では11月頃から4月頃まで強い西風が吹いている。風船爆弾はこれを利用することで考案された。そのため、風船爆弾の利用は冬季の時期に限定されていた。

ところが、高度15km以上では夏でも強い西風が吹いていることがわかった。そのためこれを利用しようと登戸研究所では高度15kmまで上昇できる直径15m気球の開発に乗り出した。しかしこの大きさの気球は、浮力が大きすぎて地上での制御が極めて困難となる。少しでも風があれば発射は極めて難しい。結局試作は行われたが、取り扱いの難しさのために本格的に量産するまでには至らなかった [14]。

つづく

参照文献(このシリーズ共通)

1. Mikesh C. Robert. Japan's World War II Balloon Bomb Attacks on North America. Smithsonian Institution Press, 1973年, Smithsonian Annals of Flight, Number 9 .
2. 防衛庁防衛研修所戦史部. 大本営陸軍部〈9〉. 朝雲新聞社, 1975年.
3. 櫻井誠子. 風船爆弾秘話. 光人社, 2007.
4. 伴繁雄. 陸軍登戸研究所の真実. 芙蓉書房出版, 2010.
5. 荒川秀俊. お天気日本史. 河出書房, 1988.
6. 荒川秀俊. 風船爆弾の気象学的原理. 東京地学協会, 1951年, 地学雑誌, 第 60 巻.
7. 草場季喜. 風船爆弾による米本土攻撃. (編) 日本兵器工業会編. 陸戦兵器総覧. 図書出版社, 1977.
8. 高田貞治. 風船爆弾(II). 中央公論社, 1951年, 自然, 第 6 巻, p44-54.
9. 高田貞治. 風船爆弾(III). 中央公論社, 1951年, 自然, 第 6 巻, p70-79.
10. Balloon Bomb(風船爆弾). Wikipedia. (オンライン) (引用日: 2019年9月5日.) https://ja.wikipedia.org/wiki/%E9%A2%A8%E8%88%B9%E7%88%86%E5%BC%BE.
11. 「ふ」作戦 ー風船爆弾始末記ー. (編) テレビ東京. 証言・私の昭和史4 太平洋戦争後期. 文藝春秋, 1989.
12. 高田貞治. 風船爆弾(Ⅰ).中央公論社, 1951年, 自然, 第 6 巻, p24-33.
13. 防衛庁防衛研修所戦史室. 戦史叢書第045巻 大本営海軍部・聯合艦隊<6>第三段作戦後期. 朝雲新聞社, 1971.
14. 明治大学平和教育登戸研究所資料館, 元登戸研究所関係者の座談会. 4号, 2018年9月, 館報, p111-127.


2022年10月25日火曜日

風船爆弾(3)

 3.   風船爆弾の開発

陸軍では「ふ」号兵器の開発を登戸研究所(第九陸軍技術研究所)に託し、その責任者を草場季喜少将が務めた。

3.1    気球の材質と気密性

1933年頃陸軍少佐であった近藤至誠が、デパートのアドバルーンを見て気球の空挺作戦への利用を思いつき、軍に提案をしたが採用されなかった。彼は軍籍を離れて、自ら国産科学工業研究所を設立し研究を進めた。この時点でこんにゃく糊を塗布した和紙を使用することを考えついていた。なお、1940年に近藤は病死したが [10]、国産科学工業研究所は、風船爆弾の製造には民間企業として大きく貢献した。

「ふ」号兵器の開発において、登戸研究所では気球の素材として手に入りやすくて軽い和紙が検討された。その材料には繊維が長いコウゾが選ばれた。当時和紙は手漉きだったが、主な労働力は既に動員されており、1個に600枚の和紙を使う気球の製造予定数25,000個を手漉きで作れる労働力は残っていなかった。和紙を大量に生産するため、陸軍登戸研究所で機械で大量に漉く方法が開発された [1]。これによって製造された和紙の品質を均一とすることにも成功した。

気球表皮の貼り合わせた和紙は、中の水素ガスを漏らさないことが重要だった。原子番号1の水素原子(H)は最も最も小さな原子であり、水素ガス(H2)は、表皮の分子レベルの隙間から漏れやすい。長時間の気密性を保つため、合成ゴム、天然ゴム、いろんな糊材、油、油布などが試験された。その結果、和紙をこんにゃく糊で貼り合わせると最も水素が漏れないということがわかった [11]。

こんにゃく糊には防腐剤と色素が混入されて、色の濃淡で気球皮膜のむらの有無を検査した。しかし、1 kgのこんにゃく芋から糊はわずか90 gしか出来ない [3]。こんにゃく芋の栽培には時間と手間がかかるため急な増産もできない。こんにゃく糊の風船爆弾への大量使用は、日本中の食卓からこんにゃくを消した。なお、こんにゃくはこのように戦前は糊としても使われていたようである。でなければ、こんにゃくを糊として使うということは思いつかなかったかもしれない。

アメリカで風船爆弾が捕獲されたとき、その気球表皮の素材がMIT(マサチューセッツ工科大学)などで分析された。この気球の気密性は当時のアメリカの気球の性能を凌駕していた。その秘密が和紙を貼り合わせた接着剤にあることはわかったが、接着剤が何で出来ているのかは戦後までわからなかった [3]。こんにゃくを食べない欧米人には、よもや食用の芋を用いているとは想像だにしなかったろう。戦後、風船爆弾は日本でこんにゃく爆弾と揶揄されたようだが、大量に準備可能でかつ水素ガスを最も漏らしにくい接着剤がたまたまこんにゃくだっただけで、水素を通しにくい接着剤の開発・発見は評価すべきものだろう。

3.2    高度制御装置

「ふ」号兵器の技術者にとっての最大の懸案は、気球が強い西風が吹く高度約10kmの太平洋上を50-70時間かけて飛行する間、この高度をいかにして維持するかということだった。この高速の西風に乗れないと、徐々に浮力を失った風船爆弾はアメリカ大陸にたどり着けずに、太平洋上に墜落してしまう。

雲のない成層圏では、昼間は気球は強い日射を受けて、中のガス温度が30℃以上にまで上昇する。そうすると、ガスの膨張のために気球の内圧が上昇して気球が破裂する。一方で、夜間は-50℃にまで下がるため、気球は低温で収縮して浮力を失って高度を下げる。そこで、高圧時の対処として気球の底部にガス放出弁を設置して高圧(高浮力)時にはガスを放出し、低浮力による沈降時には高度制御装置によってバラスト(砂袋)を投下することでこの問題を解決した [1]。なお表皮の製造状況によっては、低温のためだけでなく、水素ガスが気球表皮から少しずつ抜けて高度を下げることもあった。

高度制御装置は登戸研究所で開発された。それはアルミ製の車状の環で、環の周囲から最大で28個のバラスト(2.7kgの砂袋)と4個の焼夷弾が支索で吊り下げられた(焼夷弾はバラストを兼ねていた)。気球が浮力を失って、装置内のアネロイド気圧計によって予め設定された高度(290 hPa、約9000 m)以下に達するとカウントが行われた。そして、カウント毎に設定された爆薬が小型電池によって着火されて、それによって支索が切断されて、順番にバラストが落下するようになっていた。砂袋のバラストがなくなると焼夷弾が落下した。

支索が切断された際に、同時に3分間燃焼の導火線に着火され、バラストが落下しても高度が9000 mにまで回復しない場合は、3分後に次のバラストの支索を切り離すように設計されていた(高度が回復すれば、導火線が燃え切っても支索は切断されない) [8]。つまり高度が回復するまで3分毎にバラストを切り離すようになっていた。

バラストの投下で重量が軽減した風船爆弾は再び約11,000 mまで上昇し、強風に流されながらガスの減少や収縮によって再び設定高度まで沈降する。そうするとさらにバラストを切り離して上昇する。このプロセスを繰り返すようになっていた [1]。この高度制御装置の構造は最高の機密となった。

風船爆弾の高度制御装置とそれに吊された爆弾とバラスト(砂袋)。横を向いた筒がバラストとしても使われる焼夷弾。指定の気圧にまで下がると、カウント数に応じて車状の環の下につるされた砂袋(と最後は焼夷弾)が落下する。これが繰り返されて、最後に中央に下向きにぶら下がっている黒色の15kg爆弾が放出される。車状の環から上に延びている線は、3分後にさらにバラストを切り離すための導火線。[1]より。
なお後には、導火線を使ってバラストを切り離す方式ではなく、バケットを使って指定の気圧になるとスイッチが入って中の一定量(約3 kg)の砂を放出する型の高度制御装置も開発された。これは車状ではなく箱形で、簡便な小型の機構で確実に動作する優れたものだった [8]。この型もかなりの数が製作されたようであるが、製作後に空襲で失われた分もあり、これがどの程度実際に使われたかはよくわかっていない [3]。

3.3    成層圏の環境への対応

風船爆弾が成層圏で遭遇する技術的な問題は、装備品が遭遇する異常な低温と低圧だった。日本陸軍の装備は、すべて-30℃の環境下で使用できるように設計されていた。しかし、成層圏の気温-50℃という環境ではゴム部品やバネの弾力性が失われ、電池の出力も大幅に低下した。そこで低温用の部品や電池などについて、かなりの研究が行われた。また同様に高度約10 kmの気圧(約260 hPa)になると、バラスト投下用の爆薬が着火しなかったり導火線の燃焼時間が延びたりした。しかし、爆薬と導火線の問題の抜本的な解決法はなかったようである [8]。そのためにも爆薬や導火線を用いないバケット方式の高度制御装置の開発が望まれた。

日本にとって最も困難だったのは、風船爆弾の飛行を確認するために、安定して動作するラジオゾンデを開発することだった。ラジオゾンデとは、気象センサー(ゾンデ)などから得られた信号を無線で送信する装置である。成層圏の低温・定圧下でも長時間安定して動作することと、発信した電波が数千km先まで届く周波数を安定して確保することだった [8]。

その主な目的は、気球のガス温度の測定、内圧と外圧(高度)の測定、高度制御装置とガス放出弁の作動状況を送信することだった。また発信方位と時刻から、気球の飛行コースも推測できた。測定気圧から気球の高度(降下、上昇)がわかれば、バラストをいつ投下したかがわかる。当時、成層圏の過酷な環境で長時間稼働するラジオゾンデはなかった。風船爆弾開発の成功は、このラジオゾンデにかかっていた。

また、ラジオゾンデには電力が要るが、電池は低温になると性能が低下した。苦労したのは、-50℃という低温でも安定して動作する電池の開発だった。1944年4月から9月まで半年かかってさまざまな試験を行い、最終的に電池の周りを不凍液で覆って保温し,これを二重セルロイド製保温箱に収めて電源問題を解決した [12]。

ラジオゾンデの機能を確認するため、さまざまなモデルが開発され、気球に吊り下げられて実験が行われた。さまざまな研究の結果、ようやく適切なラジオゾンデが開発された。気球に取り付けて自由飛行させたところ、80時間連続で作動して西経130度まで飛行情報を伝えた。11月から3月までの冬季であれば、気球は3日(72時間)で太平洋を横断できると結論づけられた [3]。この高高度で長時間動作するラジオゾンデの性能は、おそらく当時世界最高のものだった。

3.4    飛行実験

作戦を成功させるためには実際の気球の飛行経路を追跡し、北米に到達する可能性が高いかどうかを確認しなければならない。発射場の準備と並行して、陸軍気球連隊(これについては後述する)は電波兵器の開発を担当する第五陸軍技術研究所の協力を得て、無線方位探知機を装備した気球位置の標定所の設置を行った。これらの標定所は青森県の淋代(古間木)、宮城県の岩沼、千葉県の上総一宮に設置された [1]。

そして、1944年2月から確認のための気球が上総一宮から打ち上げられた。これは後述の海軍の潜水艦を用いた作戦用に既に製作されていたものとされている [1]。その後、場所をいくつか変えて実験したようである。この実験による不具合を改修した結果、飛行経路や速度、投下装置などが正確に作動することなどがわかった [3]。

つづく

参照文献(このシリーズ共通)

1. Mikesh C. Robert. Japan's World War II Balloon Bomb Attacks on North America. Smithsonian Institution Press, 1973年, Smithsonian Annals of Flight, Number 9 .
2. 防衛庁防衛研修所戦史部. 大本営陸軍部〈9〉. 朝雲新聞社, 1975年.
3. 櫻井誠子. 風船爆弾秘話. 光人社, 2007.
4. 伴繁雄. 陸軍登戸研究所の真実. 芙蓉書房出版, 2010.
5. 荒川秀俊. お天気日本史. 河出書房, 1988.
6. 荒川秀俊. 風船爆弾の気象学的原理. 東京地学協会, 1951年, 地学雑誌, 第 60 巻.
7. 草場季喜. 風船爆弾による米本土攻撃. (編) 日本兵器工業会編. 陸戦兵器総覧. 図書出版社, 1977.
8. 高田貞治. 風船爆弾(II). 中央公論社, 1951年, 自然, 第 6 巻, p44-54.
9. 高田貞治. 風船爆弾(III). 中央公論社, 1951年, 自然, 第 6 巻, p70-79.
10. Balloon Bomb(風船爆弾). Wikipedia. (オンライン) (引用日: 2019年9月5日.) https://ja.wikipedia.org/wiki/%E9%A2%A8%E8%88%B9%E7%88%86%E5%BC%BE.
11. 「ふ」作戦 ー風船爆弾始末記ー. (編) テレビ東京. 証言・私の昭和史4 太平洋戦争後期. 文藝春秋, 1989.
12. 高田貞治. 風船爆弾(Ⅰ).中央公論社, 1951年, 自然, 第 6 巻, p24-33.




2022年10月22日土曜日

風船爆弾(2)

 2 風船爆弾の発案

2.1 風船爆弾の目的

1942年4月のドーリットル空襲による日本本土への不意打ちを受けて、アメリカ大陸に対する報復攻撃が検討された。その候補として「ふ」号兵器の重要性が高まった。1943年4月に川崎市登戸の第九陸軍技術研究所(登戸研究所)に、東京工業大学学長の八木秀次、中央気象台長の藤原咲平、東京帝大工学部教授の佐々木達治郎、同じく真島正市を最高顧問として、アメリカ大陸を直接攻撃するための気球兵器の研究開発プロジェクトが本格的に開始された。これは「ふ」号作戦と称された [3]。

しかし、気球はアメリカまでおよそ8000kmの太平洋上を横断しなければならない。そのためには気球は直径10 mの大型となり、気球本体の重さも含めて200kg 位になる。高度維持のためなどなどさまざまな装置を積まなくてはならないので、最終的に積める爆弾の重さは30kg 位になる。さらに風まかせで飛行する気球のため、攻撃場所をアメリカのどことピンポイントで狙うことはできない。30kg程度の爆弾(実際には15kgの爆弾1個と5kgの焼夷弾4個)では、アメリカの産業や軍事施設に大きな損害を与えることは困難だった。

この攻撃の効果は、むしろいつどこに爆弾が落ちてくるかわからないという心理的恐怖による厭戦気分をアメリカ国民に与えることが考えられた。また乾季に焼夷弾を広範囲にばら撒けば、太平洋岸の広大な森林に火災を発生させることも考えられた。これは、アメリカ人に恐怖と混乱を与える一種の謀略兵器だった。

2.2 気象の研究

本書の「9-4-1 日本の高層気象観測」で経緯を述べているように、日本では1920年に高層気象台が設立された。そしてその高層気象台が上げた気球観測の結果、「9-4-2 高層気象台でのジェット気流の発見」で述べているように、1924年12月2日に高度10kmより少し低い高度で風速72m(時速260km)という強い西風を観測した。その後、このような強い西風はまれな現象ではないことが確認された。これは今日でいうジェット気流の発見だった(ジェット気流の呼称が定着するのは第二次世界大戦後である)。当時の高層気象台長の大石和三郎は、この結果を論文にして世界に発表したが、この論文がエスペラント語で書かれていたためか、日本以外ではほとんど関心を引かなかった。

ちなみに欧米でも高度10km前後の高高度で強い西風があることは、本書の「9-4-2」で述べているように、第一次世界大戦中に気球観測に携わっていたアメリカの物理学者ミリカンが気づいていた(ミリカンは後に電荷の発見でノーベル物理学賞を受ける)。しかし、彼はそれを例外的なまれな現象と考えており、冬季にほぼ常時吹いていることには気づいていなかった。欧米でこの概念が変わるのは、本書の同じところで述べているように、第二次世界大戦中に高高度を飛ぶようになった爆撃機が、強い西風にしばしば遭遇してからである。ヨーロッパでは向かい風のため途中で燃料がなくなって不時着したり、太平洋では強風により爆撃のための正確な照準が出来なくなったりしたことがあった。

中央気象台の気象学者だった荒川秀俊(1907-1984)は、戦時中の1942年秋にラバウルに派遣されたが、そこでアメリカ軍の激しい空襲に遭った。その際にこの空襲に報復できる何か手段はないかと考え、気球に爆弾を搭載して強い西風を利用したアメリカへの直接攻撃を思いついた。そして、このアイデアを同年11月に日本へ戻った際に中央気象台に申し出た [5]。1943年に中央気象台は、風船爆弾のアイデアを海軍にもちこみ、これが海軍の風船爆弾の計画となったとも言われている [3]。荒川は1943年夏に風船爆弾のアイデアを温め、次のような調査研究を行った [6]。

1)風船爆弾が飛行する高度はどの位が適当なのか?

2)風船爆弾を用いる季節はいつが適当なのか?

3)日本で発射してからアメリカ大陸上空に到達する迄の所要時間はどのくらいで、その到達確率はどのくらいなのか?

4)風船のたどる全行程の流線の変動の具合、つまり風船の拡散の程度はどの程度か?

5)実際に発射するにあたり気象学上、発射に適するかどうかを判断する手がかりはあるか?

一方で、陸軍登戸研究所(第九陸軍技術研究所)は、それまで研究していた「ふ」号兵器に気象の知識が不可欠であるため、それについて中央気象台に助言を求めた。そこで両者の思惑が合致したようである。荒川秀俊は登戸研究所の「ふ」号兵器の研究嘱託者の一人となった。

当時、アジア大陸から日本上空を通過する風については、かなり正確なデータがあったが、太平洋上空の風は未知だった。彼はアメリカ水路局が発行する北太平洋航路天気図(Pilot Charts of the North Pacific Ocean)の海抜高度での月平均の気圧分布と気温分布から、気象学を利用して気球が流されると思われる太平洋上空の気流の推定図表を作製した [6]。これは月平均値なので大まかな気流がわかるだけであった。

さらに、アメリカ大陸上空に到達するまでに要する所要時間や全行程にわたる流線の変動を知るために、彼は神戸海洋気象台の北太平洋天気図などを用いて、今度は1940年の冬季の毎日の高層気流図を作成した。これをもとに気球を発射した際の想定流跡線図を作成すると、約2~3日で米大陸の西海岸に確実に達すると考えられた。また天気図のパターンや発射場所によっては、気球がソ連領をかすめたり、拡散の度合いが大きくなることもわかった。それらをもとに、気球の発射時期、場所、拡散程度、到達に要する日時などを判断する資料が作成された [6]。

これらは、かなりの推定を入れて作られたものだったが、当時において頼りとする唯一の資料であり、この資料がこの兵器の促進の大きい推進力となった [7]。そういう意味で、風船爆弾の実現における気象学者荒川秀俊の役割は極めて大きかったといえる。

さらに仙台、新潟、輪島、米子、福岡、潮岬、伊豆大島の7つのラジオゾンデ観測点から、1942年から1944年にかけての高層大気の気象観測データが収集されて研究された。また地上気象観測から気圧の水平勾配が求められ、それから広域での高度10kmでの風の速さが地衡風を用いて推定された。この計算から、気球の飛行コース、速度、拡散を類推し、最適な打ち上げ位置を決定した。気球が太平洋を横断するのに要する時間は、30時間から100時間で、平均60時間と推定された [1]。

日本上空の高度約10kmで強い西風が安定して吹くのは11月頃から4月頃までである。この時期は圏界面(成層圏と対流圏の境)が高度9km程度まで低下する。アメリカが乾期となる夏季(5月以降)は、亜熱帯ジェットの位置が変わりやすくなる。梅雨が明けると、亜熱帯ジェットは日本を越えて北上して圏界面が高度15km以上に上昇し、日本は背の高い太平洋高気圧に覆われる。そのため、夏季は風船爆弾の飛行が計画されていた高度10km付近では強い西風は吹かない。

アメリカの乾期は春から秋にかけてなので、もし森林火災を風船爆弾の目的にするならば、夏季が好ましい。そのため、森林火災を風船爆弾の主目的にするのは気象学的に困難があったと思われる。実際に、意見を求められた当時の山林火災の権威九州大学教授鈴木清太郎博士は、11月では遅いと指摘したが、風船爆弾の到達の確実性を優先したため、攻撃は11月から開始されることになった [8]。

上図は典型的な気球の飛行経路、下図は冬季の典型的なジェット気流の様子。[1]を和訳。なお、上図で最後は時限発火装置による爆破となっているが、 [9]では時計は量産が間に合わず、大半の風船爆弾は時計を持って行かなかったとあるので、計画はあったものの実際には気圧スイッチで爆破したと考えられる。

つづく

参照文献(このシリーズ共通)

1. Mikesh C. Robert. Japan's World War II Balloon Bomb Attacks on North America. Smithsonian Institution Press, 1973年, Smithsonian Annals of Flight, Number 9 .
2. 防衛庁防衛研修所戦史部. 大本営陸軍部〈9〉. 朝雲新聞社, 1975年.
3. 櫻井誠子. 風船爆弾秘話. 光人社, 2007.
4. 伴繁雄. 陸軍登戸研究所の真実. 芙蓉書房出版, 2010.
5. 荒川秀俊. お天気日本史. 河出書房, 1988.
6. 荒川秀俊. 風船爆弾の気象学的原理. 東京地学協会, 1951年, 地学雑誌, 第 60 巻.
7. 草場季喜. 風船爆弾による米本土攻撃. (編) 日本兵器工業会編. 陸戦兵器総覧. 図書出版社, 1977.
8. 高田貞治. 風船爆弾(II). 中央公論社, 1951年, 自然, 第 6 巻, p44-54.
9. 高田貞治. 風船爆弾(III). 中央公論社, 1951年, 自然, 第 6 巻, p70-79.

2022年10月21日金曜日

風船爆弾(1)

 1. 概略と戦前の構想

1944年11月から翌年4月まで、日本はこんにゃく糊で和紙を貼り合わせた大型の気球に爆弾をつけて発射し、上空のジェット気流に乗せてアメリカ大陸を攻撃した。これは「ふ」号兵器(通称風船爆弾)と呼ばれた。およそ9000個が発射され、約280個(3%)がアメリカに到達したと考えられている。アメリカはこれに関する報道を自主規制したため、当時の日本ではその効果はあまりわからなかった。しかし、1945年5月にオレゴン州でピクニックに来ていた6名が、木に引っかかった気球を下ろそうとして、それに付いていた爆弾が爆発して死亡した。これはアメリカ国民に注意を喚起するために広く報道された。

風船爆弾が搭載していた爆弾は35kg程度で、その威力はたかがしれていた。しかし、この爆発でもし西海岸の森林地帯で森林火災が広がったら、その影響は極めて大きくなる可能性があった。さらに重要なことは、もしこの空からのいつどこで行われるかわからない攻撃がアメリカの一般国民に知られたら、アメリカ人の戦争継続への意欲に衝撃を与えたかもしれないことだった。もしそうなれば、他の潜在的な物質的被害よりも影響は大きいため、風船爆弾の攻撃目的の一つとされた。

風船爆弾は気象を利用したためそれに依存した面があったが、大陸をまたいで目標を攻撃する人類初の兵器ともいえた。また日本にとっても風船爆弾の製造は、紙漉きや紙の貼り合わせを含むその製造におそらく数万人の一般国民を巻き込んだため、極秘ではあったが他の多種の分散した兵器の製造と異なって、国民的なプロジェクトだったともいえる。戦後に関係者による数多くの証言が出ている。

戦後、これはこんにゃく爆弾とも揶揄されたが、その評価はさまざまである。アメリカの報告書にはこの攻撃について次のように書かれている [1]。

歴史家は人類最古の飛行物を使ったこの作戦を、アメリカへの報復のための哀れな最後の努力と見なす傾向がある。しかし、これは軍事的概念における重要な発展であり、陸上や潜水艦から発射される今日の大陸間弾道ミサイルに先行するものであった。

日本の風船爆弾(「ふ」号兵器)。[1]より 

ここでは、「ふ」号兵器(風船爆弾)について、その根本的な原理を担った気象を含めて詳しく見てみる。なお、「ふ」号兵器の「ふ」は秘匿のために風船の頭文字をとったものとされている [2]。ここでは「ふ」号兵器と風船爆弾という両方の名称を用いている。なお私には、なぜ気球爆弾ではなく「風船」爆弾という名称なのか?という疑問がある。この表現が揶揄なのか、自嘲なのか、純粋に秘匿のためなのか量りかねている。

歴史を遡ると、1933年に陸軍科学研究所の多田礼吉中将が、新しい戦争兵器を調査・開発する「空中輸送研究開発計画案」の責任者に任命され、いくつかの新しい兵器の開発を行っていた。後に陸軍登戸研究所で風船爆弾の責任者となる草場季喜(くさばすえき)中佐は気球を用いた兵器を提案した。それは満州東部から発射して宣伝ビラを撒いてウラジオストクを攪乱することが目的だった [3]。

一方でアメリカ側の資料(おそらく戦後に日本で聞き取ったか、日本の資料を参考にしたと思われる)では、「1933年頃、直径4メートルの小型の定高度気球に爆薬を搭載し、風で爆弾を敵の陣地まで約100km運び、時限信管でそれを投下するものが研究されていた」と書かれている [1]。それを用いれば、第一次世界大戦でドイツ軍がパリに対して使用した長射程砲と近い精度のものが得られると期待された。

しかし、このプロジェクトは1935年に中断された。しかし、気球を使ったこの「ふ」号兵器のアイデアは完全に中止されることはなく、その名称を含めて何らかの形で研究が継続されたようである。爆弾だけでなく、夜間に敵陣に歩兵を隠密に運ぶための気球も検討された [1]。

なお、陸軍科学研究所は1937年12月に登戸実験場を設けて、その実験場長には草場季喜中佐が任命された。登戸実験場は1939年9月に登戸出張所として拡張され、篠田鐐少将が所長となった。さらに陸軍科学研究所が1941年6月15日に第一から第九までの陸軍技術研究所となった際に、登戸出張所は第九陸軍技術研究所となった。しかし、他にもさまざまな秘密兵器を担当していたためその存在は公にされず、通称で登戸研究所と呼ばれたようである。この登戸研究所が引き続き気球を使った兵器の開発を担当した [4]。それが最終的に風船爆弾となった。ここでは、登戸研究所と記すが、軍の組織であることを明確にしたい場合は第九陸軍技術研究所を使っている。

つづく

参照文献(このシリーズ共通)

1. Japan's World War II Balloon Bomb Attacks on North America. MikeshC.Robert. 出版地不明 : Smithsonian Institution Press, 1973, Smithsonian Annals of Flight, Number 9.
2. 大本営陸軍部〈9〉. 防衛庁防衛研修所戦史部. 朝雲新聞社, 1975.
3. 櫻井誠子. 風船爆弾秘話. 光人社, 2007.
4. 伴繁雄. 陸軍登戸研究所の真実. 芙蓉書房出版, 2010.